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Abstract
We investigate the existence and propagation of solitons in a long-range 
extension of the quartic Fermi–Pasta–Ulam (FPU) chain of anharmonic 
oscillators. The coupling in the linear term decays as a power-law with an 
exponent α<1 3⩽ . We obtain an analytic perturbative expression of traveling 
envelope solitons by introducing a non linear Schrödinger equation  for the 
slowly varying amplitude of short wavelength modes. Due to the non analytic 
properties of the dispersion relation, it is crucial to develop the theory using 
discrete difference operators. Those properties are also the ultimate reason 
why kink-solitons may exist but are unstable, at variance with the short-range 
FPU model. We successfully compare these approximate analytic results with 
numerical simulations for the value α = 2 which was chosen as a case study.
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1. Introduction

The study of the equipartition process in the Fermi–Pasta–Ulam–Tsingou (FPU) model 
of nonlinearly coupled oscillators [1–3] has led to important discoveries in both statistical 
mechanics [4, 5] and nonlinear science [6]. At the same time, nonlinear oscillator chains serve 
as the simplest prototypes for complex condensed matter systems [7, 8] and biophysical phe-
nomena [9, 10]. In particular, the study of FPU chains has historically motivated the discov-
ery of solitons [11, 12]. Further developments, namely nonintegrable (Klein–Gordon [13] 
and Frenkel–Kontorova [14]) and integrable Toda [15] chains helped much in understand-
ing the interplay between integrability and chaos [1]. These concepts have been applied to 
describe transport properties in electric transmission lines [16] and even in quantum systems, 
such as Josephson junction parallel arrays and lattices [17, 18]. In most cases, the analysis 
was restricted to one-dimensional (d  =  1) lattices where oscillators interact only with nearest 
neighbors, i.e. to short-range interactions.

In recent years there has been a growing interest in systems with long-range interactions. 
In such systems, either the two-body potential or the coupling at separation r decays with a 
power-law α−r . When the power α is less than the dimension of the embedding space d, these 
systems violate additivity, a basic feature of thermodynamics, leading to unusual properties 
like ensemble inequivalence, broken ergodicity, quasistationary states [19, 20].

Long-range coupled oscillator models have been previously introduced to cope with dipolar 
interactions in mechanistic DNA models [21]. They describe also ferroelectric [22] and magn-
etic [23] systems, where the long-range coupling is provided again by dipolar forces [24]. 
Other candidates for application are cold gases: dipolar bosons [25, 26], Rydberg atoms [27], 
atomic ions [28, 29]. Moreover, one can mention optical wave turbulence [30] and scale-free 
avalanche dynamics [31], where such long-range couplings appear. The extension of the FPU 
problem to include long-range couplings is rarely considered [32–34] (but see [35, 36] for the 
cases of oscillators with more than two neighbors) and attention has been mainly focused on 
deriving the continuous counterpart of the discrete long range models [33], on considering 
thermalization properties caused by the long-range character of the interactions [34, 37], or on 
finding conditions for the existence of standing localized solutions like breathers [32].

In this Letter, we consider a generalization of the FPU model by introducing a long-range 
coupling in the linear term decaying with the power α, while keeping the nonlinear term short-
range. We have chosen the power in the range α<1 3⩽ , where we obtain qualitatively similar 
results. Below α = 1 the energy diverges and above α = 3 the systems becomes short-range. 
Dipolar systems correspond to the power α = 3, while the power α = 2 has been considered 
for crack front propagation along disordered weak planes between solid blocks [31] and con-
tact lines of liquid spreading on solid surfaces [38].

2. Methods

The Hamiltonian of the model reads
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Assuming plane wave solutions of the form

ℓ
ℓ= +−Ωu A 2 e c.c.q ti( / ) ( ) (3)

and substituting them into the equations of motion, we obtain the nonlinear dispersion rela-
tion in rotating wave approximation (RWA) for the normal mode frequencies Ωn and wave 
numbers qn
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This dispersion relation in the linear limit A 0→  is shown in the main plot of figure 1. 
The insets show its first derivative vg (group velocity) and second derivative ″Ω . Derivatives 
are performed by discrete differences for a sufficiently large finite value of N with step size 

π=h N2 / . In all calculations below we choose to use power-law exponent α = 2 without loss 
of generality, since we have tried several values from the range α<1 3⩽  and they all display 
similar properties. In particular, both the group velocity vg and ″Ω  diverge when ∞N →  in the 
zero wavenumber limit q 0n → .

Let us concentrate first our attention on the solitons that appear at small wavelength. As 
usual [39], we represent the solution as an expansion in normal modes
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Focusing on the carrier wavenumber q0 of the wave packet and the associated frequency Ω0 in 
the limit A 0→ , i.e. Ω ≡Ω =q A, 00 0( ), and defining δΩ = Ω + Ωn n

0 2ε , δ= +q q qn n
0 ε , we 

get an expression of the form of equation (3)

ℓ
ℓζ τ= +−Ωu A , e c.c. .q ti 0 0[ ( ) ]( )ε (6)

where the envelope function ζ τA ,( ), is a slowly varying function in space ℓζ = ε  and time 
τ = t2ε . Its expression is
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Figure 1. Main plot: dispersion relation (4) in the linear limit →A 0 for discretized 
values of the wavenumber /π=q n N2n , N  =  512. Top inset: the first discrete derivative 
of the dispersion vg (group velocity). Lower inset: the second discrete derivative ″Ω .
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Taking the time derivative of formula (7) we get
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where ∆h
s( ) is the difference operator of order s with step size π=h N2 /  in the limit 

A  =  0. We will restrict ourselves to difference operators of first and second order: 
∆ Ω ≡Ω + −Ωq h qh

1 0 0 0 0 0[ ] ( ) ( )( )  and ∆ Ω ≡Ω + + Ω − − Ωq h q h q2h
2 0 0 0 0 0 0 0[ ] ( ) ( ) ( )( ) . 

Then, substituting (9) into (8) and taking into account the definition (7), we get the following 
nonlinear equation for the amplitude ζ τA ,( )
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where the definitions below have been introduced

[ ] / [ ] /
( )/ ( ) ( ) /

( ) ( )″= ∆ Ω Ω = ∆ Ω

= ∂Ω ∂ | | = − Ω
=

v h h

R q A q

, ,

3 1 cos 2 .

g h h

n A

1 0 2 0 2

0 2
0

0 2 0 
(11)

Now, switching to a comoving reference frame with a rescaled time t and space ξ where 
ℓξ = − v tg( )ε , we get the Non Linear Schrödinger (NLS) equation
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This equation has the well known one-soliton solution for A, which can be inserted in expres-
sion (6) to get
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where f stands for the soliton amplitude.
It is noteworthy to mention that the semi-discrete approach [40–42] based on the continu-

ous reductive perturbation theory [43] fails in the derivation of the soliton profile (13). In par-
ticular, a derivation similar to [40] leads to the same NLS equation (12), but with a different 
dispersion coefficient containing continuous derivatives ″Ω = ∂ Ω ∂q2 0 2/  instead of difference 
operators as given in equation (11). The appearance of continuous derivatives causes a diver-
gences of both the group velocity vg and ″Ω . Indeed, considering continuous derivatives
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the first term on the right-hand side is divergent for α = 2. Specifically, it oscillates as a 
function of both q and N. In summary, the approach in [40–43] does not lead to the correct 
expression for the soliton parameters. The correct approach relies on a discrete wave-packet 
dynamics [39] and on the use of discrete difference operators, as done in this Letter.
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3. Results

We have performed numerical simulations of the set of equations (2) with periodic boundary 
conditions, using solution (13) as an initial condition (t  =  0), i.e. we consider ℓ =u t 0( ) as ini-
tial displacements and ℓ =u t˙ 0( ) as initial velocities. In figure 2 we display the time-evolution 
of this initial condition for three different wavenumbers, approaching q0  =  0 from bottom to 
top. As predicted by linear theory the group velocity vg increases when q0 decreases. At the 
same time, the width of the soliton grows as well and thus the wave amplitude must increase 
in order to keep the soliton within the lattice length limits.

Traveling envelope solitons are robust against perturbations and we do not observe their 
destruction on a long time scale, while single carrier mode excitation with the same amplitude 
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is modulationally unstable. This instability is presented in figure 3. The soliton shape (left 
panel) remains unchanged up to the time t  =  104, while the single mode excitation (right 
panel) collapses on a much shorter time interval.

One has to mention that the effective nonlinearity parameter in our model is ″|Ω |f R/  and 
we can therefore increase the wave amplitude f in the small carrier wavenumber limit without 
violating the weak nonlinearity restriction. Let us note that, in the end, we get the nonlinear 
Schroedinger equation (12), which has a nonlinear coefficient R. Thus, if the latter is small, 
one can take large amplitude excitations and proceed by using the same formalism developed 
in the present paper. This is indeed justified by numerical simulations: When one has small 
carrier wavenumber, the nonlinear coefficient R appears to be small and, as seen in figure 3 
(top left panel), one can take large amplitudes, namely close to f  =  2. Beyond this weak non-
linearity limit, traveling envelope solitons become unstable or they are trapped by the lattice 
and transform into standing breather solutions [32].

The existence of other weakly nonlinear localized solutions, like kink-solitons, is limited by 
the fast increase of the group velocity in the low wavenumber limit. In fact, low wavenumber 
excitations, which should in principle generate kink-solitons, are characterized by drastically 
different velocities and they cannot form localized wave packets obeying the Korteweg–de 
Vries (KdV) or the modified KdV equations [11, 40, 44, 45]. These problems appear as well 
in the case of the analytic description of envelope solitons.

However, at strong nonlinearity, kink-soliton solutions with ‘magic’ wavenumber π2 3/  
exist. Extended waves with that particular wavenumber are exact solutions of model (2). It 
has been proposed that such exact solutions can acquire a compact support and maintain their 
validity as approximate solutions [46, 47]. These truncated wave solutions can be written in 
terms of relative displacements as follows
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ω π≡Ω = = Ω +q A A2 3, 45 16N 3
0 2 2( / ) ( ) ( / )/ (16)

and the supersonic kink is characterized by the group velocity ω π=v 3 2/ . We have considered 
here these approximate analytical kink-antikink solutions (15) as initial conditions. As far as 
we use periodic boundary conditions, it is impossible to consider single kink motion: we have 
thus monitored the dynamics of kink-antikink pairs (see figure 4). As it appears from numer-
ical simulations, although the dynamics follows approximately the solution (15), the kinks 
are much less robust against the collisions with perturbative excitations than it happens in the 
case of envelope solitons. At the beginning the kink shape remains unchanged, but the kink-
antikink motion creates perturbations in the lattice and those inhomogeneities finally cause the 
destruction of the kink solution.

4. Conclusions

Concluding, we have analytically found moving soliton solutions in a long-range version of 
the FPU model (2). Those are weakly nonlinear envelope solitons and strongly nonlinear kink-
soliton solutions. Envelope solitons show stable propagation along the lattice at variance with 
kink-solitons which collapse on a short time scale. Numerical simulations confirm the validity 
of the analytic approximate solutions.
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